Explicit non-Gorenstein R=T via rank bounds
Catherine Hsu (Swarthmore College)
Abstract: In his seminal work on modular curves and the Eisenstein ideal, Mazur studied the existence of congruences between certain Eisenstein series and newforms, proving that Eisenstein ideals associated to weight 2 cusp forms of prime level are locally principal. In this talk, we'll explore generalizations of Mazur's result to squarefree level, focusing on recent work, joint with P. Wake and C. Wang-Erickson, about a non-optimal level N that is the product of two distinct primes and where the Galois deformation ring is not expected to be Gorenstein. First, we will outline a Galois-theoretic criterion for the deformation ring to be as small as possible, and when this criterion is satisfied, deduce an R=T theorem. Then we'll discuss some of the techniques required to computationally verify the criterion.
algebraic geometrynumber theory
Audience: researchers in the topic
Series comments: The Number Theory and Algebraic Geometry (NT-AG) seminar is a research seminar dedicated to topics related to number theory and algebraic geometry hosted by the NT-AG group (Nils Bruin, Imin Chen, Stephen Choi, Katrina Honigs, Nathan Ilten, Marni Mishna).
We acknowledge the support of PIMS, NSERC, and SFU.
For Fall 2025, the organizers are Katrina Honigs and Peter McDonald.
We normally meet in-person in the indicated room. For online editions, we use Zoom and distribute the link through the mailing list. If you wish to be put on the mailing list, please subscribe to ntag-external using lists.sfu.ca
| Organizer: | Katrina Honigs* |
| *contact for this listing |
